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Data are  presented here which have been obtained in a study of t ransi t ions in gas jets and in 
f lames.  It is shown that the flow charac te r i s t i c s  of gas jets and of hot f lames remain the 
same as of jets of an incompressible  fluid. 

The transit ion flow region in submerged jets of an incompressible  fluid has been analyzed by various 
authors [1, 2, 3, 4]. Less  explored are  the transi t ion patterns in jets of variable density. It would be of 
considerable in teres t  to establish the effect of the gas density to ambient medium density rat io on the t ran-  
sition when a light gas d ischarges  into a heavier  a tmosphere  or when a heavy gas d ischarges  into a lighter 
a tmosphere .  With this in mind (extension of [3]), an experimental  study was made concerning the propaga- 
tion of a helium and a Freon jet discharging into a i r  f rom long pipes ( l /d  ~100). In order  to provide a com-  
plete picture of the process ,  a study was also made of the transit ion in a burning gas flame which forms 
when a hot gas mixture d ischarges  into a i r  from a special ly profiled nozzle. 

In those tests ,  the results  of which will be presented here,  the Reynolds number was varied within 
the 1600-34,000 range and the density ratio P m e d / P j e t  was varied from 7.15 to 0.25, Pmed denoting the 
density of the medium and P jet denoting the density of the jet. 
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Fig. 1. Variation of (oU2)m along the 
jet axis (a): Re 0 =2460 (1), 2700 (2), 
3220 (3), 3660 (4), 4050 (5), 4950 (6), 
7950 (7), 10,950 (8), 16,650 (9), and 
18,100 (10); as a function of the Re 0 
number  at  ~ --- 8 {b). Both (a) and (b) are  
for helium discharging from a pipe, 

In Fig. la  are  shown data on the variat ion of dynamic 
p ressu re  ~-U2)m = (pU2)m/{Ou2)0 along the jet axis at various 
Reynolds numbers for helium discharging into air .  

These data show that the rate at which ~--U2)m var ies  
along the jet axis depends considerably (and nonmonotonic- 
ally) on t h e R e  0 number.  For  Re 0 numbers f rom 1500 to 
4000, an increase  of the Re 0 number produces a la rger  @~2) m 
drop along the flow axis. As the Re 0 number increases  fur- 
ther,  (p'u2) m drops less along the axis until the axial dis-  
tribution of ~--U2)m becomes  a lmost  independent of the Re 0 
number for Re 0 - 20,000. The cha rac te r  of these variat ions 
is shown comprehensively  in Fig. lb, where the ralation 
(p--~2)m =f(Re 0) is plotted for a fixed value o f ~  =x/d .  The 
graph reveals  four distinct ranges of the (~2)m =f(Re0) 
curve (as in the case of a submerged jet discharging into a 
gas of the same density [3]), which cor respond respect ively  
to a laminar  flow (I), a t ransi t ional  flow ffI-III), and a fully 
developed flow (IV). 

Typical  of such transi t ion inherent in free jets [3,6] 
is that the laminar  flow becomes unstable ve ry  suddenly. 
In consequence, the value of (~-h2)m drops below the con- 
stant level which cor responds  to turbulent flow before reach-  
ing it (ranges II-III).  
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Fig. 2. Variation of (oU2)m along a jet axis: Re 0 =2700 (1), 4000 (2), and 18,300 (3) for a i r  
(dashed line); Re 0 =2840 (4), 4000 (5), and 18,100 (6) for Freon (solid line); Re 0 =2460 (7), 3660 
(8), and 16,550 (9) for helium (dashed-dotted line). 

Fig. 3. Variation of (pU2)m along a flame axis at different Re 0 numbers  (~ = 0.55): Re 0 = 3700 
(1), 5400 (2), 6900 (3), 8100 (4), 11,200 (5), and 15,00 (6). 

An analogous pattern is observed when a heavy gas (Freon-22) d ischarges  into air .  Naturally, in 
both cases  the maximum mixing rate (minimum point on the (b-U2)m = f(Re0) curve at fixed values of x) 
corresponds  to the same cr i t ica l  Re 0 number approximately 4000, as has been determined from the flow 
pa ramete r s  (Re 0 = u0d/v ). 

Derivative data on the axial variation of (~2)m in gas jets with a variable or with a constant density 
a re  shown in Fig. 2. These data reveal  the effect which the ratio of gas density in a jet to the density of 
the ambient medium in the direct ion of flow has on the variat ion of (p-U2)m . This effect is most  pronounced 
at a low discharge velocity. The (p-'U2)m = f(Re0) curves  come c lose r  together  in the fully developed turbu-  
lence range, although the basic relation remain intact: (pU2)m drops fas terwhen Pmed/Piet > I and s lowe rwhen 
Pmed/Pjet < 1. The curve which corresponds  to Pmed/Pje t = 1 occupies an immediate ~ position. As to the 
t r ansve r se  distribution of pu 2, here as well as in other cases  a higher rate of jet attenuation along the axis 
cor responds  to a rapid expansion of the mixing zone and to an increas ing effective thickness of the boundary 
layer.  

An aerodynamic analysis  of the transit ion flow region in a gas flame was per formed with a test  appa- 
ratus consist ing of a s traight-f low burner  with a profiled nozzle 18 mm in d iameter  and with a 4:1 adjust-  
ment range. The fuel (propane) and the oxidizer (air) were fed into a mixing chamber  located at a con- 
siderable distance from the nozzle. This a r rangement  ensured a uniform gas mixture at the burner  outlet. 
Steady burning was ensured by means of a s tabi l izer  ring located 2 mm away from the nozzle throat .  It 
was ascer ta ined by appropriate measurements  that the s tabi l izer  did not introduce any significant distort ions 
into the dynamic p ressure  distribution within the flame. 

Measurements  of (~'fi2)m made along the flame axis at different Re 0 numbers  (with a constant mixture 
ratio) are  shown in Fig. 3. In a hot flame, as also in a gas je__t, the relation (~Z)m - f(Re0) is not a mono- 
tonic function at any section of the jet, i.e., at  any specified x. When the Re 0 number is relat ively low, an 
increase  in discharge veloci ty  results  in a higher mixing rate and a correspondingly fas ter  drop along the 
flame axis. The flow momentum intensity is attenuated at the maximum rate when the Re 0 number is in the 
6000-7000 range. As the Re 0 number increases  further,  (~2)m drops along the flame axis at a s lower 
rate.  The (b-U2)m-distribution becomes independent of the Re 0 number in the fully developed turbulent flow 
region. 

In this way, the flow charac te r i s t i c s  of the transi t ion region are  qualitatively identical in hot flames 
and in gas jets.  

Some data describing the effect of the Re 0 number in a flame on the variat ions in (p-U2)m = f(Re0), 
a lso on the variat ions in temperature ,  are  shown in Fig. 4. They indicate the cr i t ica l  t ransi t ion mode 
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Fig. 4. Jet parameters at fixed points 
along a flame axis, as a function of the 
Re 0 number (~ =0.56): solid lines re fe r  
to (p-U2)m at ~ =3 (1), 5 (2), and 7 (3); 
dashed lines re fe r  to AT m at ~ =3 (4), 
5 (5), and 7 (6). 

being reflected in the profiles of all charac te r i s t i c  pa ramete r s .  
Moreover,  the function AT m = f(Re0) (AT m = (37- T0)/(Tf-T0) 
with Tf and T o denoting the flame and the ambient tempera ture  
respectively) passes  through a maximum as a consequence of 
an intensified heat t r ans fe r  in the cr i t ical  range of Re 0 numbers.  
This process  is depicted by the nonmonotouic If  = f(Re0) curve 
of relative flame length as a function of the Re 0 number,  with 
a charac te r i s t i c  minimum within the range of Re 0 numbers 
which cor responds  to the region of intensive mixing in the jet. 

It has been indicated ea r l i e r  that at low Re 0 numbers  in 
a jet of incompressible  fluid the flow becomes turbulent with- 
in a narrow zone at some distance from the nozzle throat.  In 
this zone the value of Rex,cr  =UmX/V is constant.  Measure-  
ments have shown that the value of Rex,cr  in a flame is quite 
close to its value iu a jet of incompressible  fluid*. 

The overall  results  show that the cr i t ica l  mode of t ran-  
sition from laminar  to turbulent flow is the same in free jets 
of an incompress ible  fluid or  gas and in a hot flame. The t ran-  
sition region is represented on a nonmotonic curve of basic 

flow pa ramete r s  (velocity, tempera ture ,  and others) with two charac te r i s t i c  ex t remum points: at the end 
of the laminar  range and in the transi t ion range. The ex t remum in the latter cor responds  to the highest 
rates  of momentum, heat, and mass  t ransfer .  
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* In gas jets Rex,cr  could not be determined,  since the concentrat ion profile was not measured.  
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